Case Study of Model Adaptation: Transfer Learning and Online Learning
نویسنده
چکیده
Many NLP tools are released as programs that include statistical models. Unfortunately, the models do not always match the documents that the tool user is interested in, which forces the user to update the models. In this paper, we investigate model adaptation under the condition that users cannot access the data used in creating the original model. Transfer learning and online learning are investigated as adaptation strategies. We test them on the category classification of Japanese newspaper articles. Experiments show that both transfer and online learning can appropriately adapt the original model if the dataset for adaptation contains all data, not just the data that cannot be well handled by the original model. In contrast, we confirmed that the adaptation fails if the dataset contains only erroneous data as indicated by the original model.
منابع مشابه
Designing collaborative learning model in online learning environments
Introduction: Most online learning environments are challenging for the design of collaborative learning activities to achieve high-level learning skills. Therefore, the purpose of this study was to design and validate a model for collaborative learning in online learning environments. Methods: The research method used in this study was a mixed method, including qualitative content analysis and...
متن کاملA Probe into Adaptive Transfer across Writing Contexts: A Case of an EGAP Class
In an effort to expand the disciplinary discussions on transfer in L2 writing and because most studies have focused on transfer as reuse and not as an adequate adaptation of writing knowledge in new contexts, the present study as the first of its kind aimed to explore the issue of adaptive transfer in an English for General Academic Purposes (EGAP) writing course. The study thus focused on type...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملThe Potentiality of Dynamic Assessment in Massive Open Online Courses (MOOCs): The Case of Listening Comprehension MOOCs
Massive Open Online Courses (MOOCs) as a new shaking educational development provide the scene for achieving social inclusion and dissemination of knowledge. Anyhow, facilitating network learning experiences through creating an adaptive learning environment can pave the way for this open and energetic way to learning. The present study aimed to explore the possible role of Dynamic Assessment (D...
متن کاملInterfirm Alliance Interactions and knowledge Learning: A Conceptual Research Model
Alliance raises many knowledge transfer and interfirm learning issues that have implications for how the alliance partners manage their cooperative learning activities in the alliance system. Many of these implications are grounded in the assumption that partners in the alliances have routines for transferring knowledge, learning, gaining management efficiencies. Thus organisations can support ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013